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ABSTRACT

Flux-profile relations are presented for wind and temperature in the

surface layer of the unstable atmospheric boundary layer. The flux-profile

relation for wind is derived from the so-called 'KEYPS' equation, a quartic

equation whose real, positive root is equal to the nondimensional wind shear.

The analogous relation for potential temperature is a new cubic equation whose

real, positive root is equal to the nondimensional temperature gradient

(Helfand, 1984). It is assumed that the nondimensional humidity gradient is

equal to that for temperature.

The nondimensional gradients reduce to conventional empirical relations

for conditions of weak instability but, unlike the conventional relations, go

to the 'free-convection' limit for conditions of strong instability.

The integrated forms of the flux-profile relations yield expressions which

can be solved iteratively for the Obukhov length which, in turn, can be used to

compute surface momentum, heat, and moisture fluxes. Although the flux-profile

relations and their-integrated forms have no evident closed-form solutions,

rational fraction and asymptotic approximations are derived that are no more

costly computationally than the expressions currently in use in numerical

prediction models that use conventional flux-profile relations.



I. Introduction

Perhaps the most important practical problems in boundary layer meteorology

are the determination of the turbulent fluxes of momentum, heat, and moisture

and also the determination of the profiles of wind, temperature, and specific

humidity near the earth's surface.

The similarity theory of Obukhov (1946) and Monin and Obukhov (1953, 1954)

is the centerpiece of all such flux and profile considerations. Obukhov

similarity theory shows that turbulent fluxes in the atmospheric surface layer

can be uniquely determined from measurements of roughness length ( o ), ground

temperature and humidity ( e o) o ), and temperature, wind speed, and humidity

at an additional level e =. The nondimensional bulk Richardson number IE

(= = 9 I e / U 2z determines the scaled height h/L (L = Obukhov length) from

which surface fluxes may be computed (g = acceleration due to gravity; e =

reference potential temperature). This result is of considerable importance in

numerical prediction models that use a balance of solar, long wave, sensible,

latent, and soil heat fluxes to predict or diagnose surface temperature and

humidity.

Obukhov similarity theory postulates the existence of universal functions

and N such that the nondimensional wind and temperature shears are

given by

:a it hi = L)
U(k % (1.la)

and

* : D 0 0 iD 0 M M =; W (7IL).1b 

:~ ~ ~ ~~~~~~~~~~1 .b)



in which k is the von Karman constant and b is the neutral Prandtl number. A

similar expression exists for humidity,

kid:~ T _ t t/ L) ,

(See the appendix for a definition of the symbols used in

Although not required by Obukhov similarity theory, it is

= ~t O and c = b.

(1.lc)

this report.)

usually assumed that

No complete theory exists that predicts c / L) and O(/ L) over

the entire stable and unstable range. Moreover, experimental data are still

lacking in sufficient precision to specify interpolation formulae for v

and without equivocation. Accordingly, semi-empirical functions abound.

Dyer (1974) and Yaglom (1977) have surveyed many such relations for stable and

unstable cases. The relations for unstable cases that have probably enjoyed the

greatest popularity in numerical models are those of Businger et al. (1971),

cKQ CL) QX~1 5 ) (1.2a)

ti~~i/L3~ tl -Aitl40 ; i- 0 35 ~(1.2b)

and Dyer and Hicks (1970),

: ~ A t IL = (
\1 (jE- L-) ;-=

-. 3 ~~~ Lf,. 
- I /b :,- 
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: ~ ~~~~ :
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(1.3a)

(1.3b)



The integrated forms of (1.2,3), valid for -- / L >,0, [see (3.5)] can be

expressed in closed-form, although the results are somewhat complicated. It is

probably the closed-form nature of the integrated expressions that accounts for

their popularity among numerical modelers.

None of these expressions, however, has the correct 'free-convective'

asymptotic form for -'I/ L--cO , first predicted by Prandtl (1932) and later

by Obukhov (1946), Priestly (1954), and Kazansky and Monin (1958). As the

free-convection limit is approached, the surface heat flux becomes increasingly

independent of U and ultimately becomes proportional to A e z . There are

two ways by which the limit may be approached: either by increasing z or by

decreasing u* to u* --> o.

For the free-convection limit to hold, dimensional analysis shows that X O/

and i@/;Zmust have the limiting form

-i i n t t-z/L) (1.4a)

(see, e.g., Monin and Yaglom, 1971 and Lumley and Panofsky, 1964)

apparently conflicts with (1.2,3) for which

~_~~-' . ~ -~/)'
:~~~ so,~ .nt ff ~ (-z)~)-: :~~~~~~~~

: N AC Ck) in ( y ) e~~~~

(1.4b)

, which

(1.5a)

(1.5b)
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The nature of this discrepancy has not been resolved. If the free-convection

results are valid, then it may be that the sparseness of data points for -f/ L

greater than ' O_ (see Businger, et, al., 1971) is the source of the

difficulty. Indeed, Carl et al. (1973) argue that a composite of tower data

suggests that

0 5 Add/ 4 = t\ - \@ it/ (1.6)

for / O . Eq. (1.6) obviously reduces to the free-convection limit

-4 L 3 as -z/L -> °- 

The so-called KEYPS profile is an interpolation formula for . 'KEYPS'

is constructed from the initials of the Western researchers who independently

devised the profile after Obukhov (1946) first proposed it. The KEYPS profile

is computed from the solution of the following defining quartic relation,

t A _ < 5| t 5 \ =-0 O (1.7a)

in which HR is a constant. Recently, Helfand (1984) has proposed a cubic

equation to supplement (1.7a)

N h!L C -h i51 * t \ 0° (1.7b)

to account for the universal temperature profile.

Our purpose in this report is not to attempt to show that (1.7) represent

observational data with greater fidelity than the Businger or Dyer profiles. We

shall be content, however, to show that: (a), (1.7) reduce to the Businger-Dyer



relationships for mild instability and the free-convection limit for strong in-

stability (-i/L>>); and (b), although the defining quartic and cubic relations

appear to be computationally impractical, they can be utilized in numerical

models at least as efficiently as the Businger-Dyer relations.

For the remainder of this report, we shall refer to the KEYPS and Helfand

relations collectively as the GUST (- General Unified Similarity Theory) relations.

2. Solutions to the flux-profile relations

In this section, we will show that the GUST relations tend toward the Businger-

Dyer relations for small values of--/Land the free-convection relations for

large values of-?/L. We will then present simple methods for computing

., and h for the entire unstable regimeo-- /L<oo.

As a primary requirement, we must determine if each of the GUST relations,

E D ::(2.1 a)

L - - h L A -I - D D(2.1b)

rewritten more conveniently with /L , 

CQ A t X t3 (2.2a)

0 e h 0 n h t h 0: ~~~~~~~~~~~~~~(2 .2b)

has one, and no more than one, positive (physical) root for each value of

0 >~0 . Descartes' 'rule of signs' (Korn and Korn, 1965) states the number of



positive roots of a polynomial cannot exceed the number of sign changes of the

polynomial's coefficients. Since the GUST relations have only one sign change,

there can be no more than one positive root for each equation. We shall show

how the roots can be computed efficiently later in this section.

To show that the GUST relations reduce to the standard flux-profile rela-

tions for small values of , we recast (2.2) into the forms

(2.3a)

(2.3b)

For the case of weak convection, -~O and C 7 therefore, for weak

instability,

KLt LJ (2.4a)

(2.4b)

The exponents -1/2 and -1/4 agree with most of the semi-empirical flux-profile

relations. We note, however, that series expansions of the GUST profile

relations agree with conventional profiles only to orders 0(1) and 0(7), and

differ at 0( 2) and higher orders.

To find the limiting forms of and for strong convection, we

rewrite (2.2) as

(2.5a)



(2.5b)

(hereafter, for simplicity, the subscripts on % will be omitted). As __co,

the term / in (2.5b) vanishes and r . As ?__~o , we shall

tentatively assume that % c - -00 , in which case (2.5a) asymptotically

becomes h r % . We see that the tentative assumption, n q-->c , is

~consistent wth T 3, since'o . The limiting relationsconssten wihsnc,
rV t , 73are sometimes referred to as 'strict' free-convection scaling.

(Tennekes, 1973; Zilitinkevitch, 1970).

In addition to their yielding asymptotic relations for --,?Oand?- °°, (2.3)

and (2.5) lead to efficient iteration formulas for evaluating and

that is,

(2.6a)

+V~~~~~~ h V 0( eh )(2.6b)

and

A - -
=~vx Pt7 (, or C~ It ~ (2.7a)

7;' 0 S :E = V (\\ +)/X c J)3 '3(2.b)
* :~~~~~~~~~~~~~~~~~~~~~~~~o

where (j) and (j+l) denote the j and j+1 iterates, beginning with = 1.

Computational experiments indicate that (2.6) converge more quickly than (2.7)



for I 4 and that (2.7) converge more quickly than (2.6) for T >i . For a

fractional error of 10-3, no more than five iterations are required; for a

fractional error of 10-8, fewer than a dozen iterations suffice. Values of 

computed from the iteration relations are presented in Table 1.

An alternative method for generating a table of consists of converting

the quartic and cubic algebraic GUST equations into ordinary differential

equations. Differentiating the quartic equation for ~ yields

Table 1. The nondimensional universal functions ~ and 
as a function of . .

0.001 0.99975 0.99950
0.005 0.99875 0.99752
0.01 0.99751 0.99506
0.05 0.98773 0.97645
0.10 0.97591 0.95540
0.50 0.89498 0.83929
1.0 0.81917 0.75488
2.5 0.68002 0.62477
5.0 0.56432 0.52517
10.0 0.45729 0.43310
25.0 0.34046 0.32917
50.0 0.27095 0.26494
100.0 0.21 2 0.21216
500.0 0.12598 0.12533
1000.0 0.09999i7 0.099667

5000.0 0.058480 0.058414

VA T!e +0t rt=° (2.8)

""'

with . (o) = 1. This procedure converts the quartic algebraic equation into

an initial value problem that can be 'marched' from -O to the largest

desired value of . In practice, 1 rv-.5represents a reasonable upper limit.

Beyond /= , simple asymptotic 'algebraic formulas work quite well.



Unlike the Businger or Dyer flux-profile laws, (2.7) and (2.8) suggest that

there are no closed-form solutions for . Rational functions, however,

can be used to approximate effectively. Given the function y(x), the

rational function L () defined by

LL

(y into (2.9) leads to a N x N system of equations in which 

~jb, ~z).. 6 mis the solution vector. In order to approximate ~vj (rk)

YL M M 

' 0 1 ~~~+ ilt ; < + lo G CM(2.9)

.~~~~~~~~~~~~~~~~

ican the range d ,it is sufficient to choose the seven collocat2ion points 

values of O.). and . 2.since.OThe choice of seven points allows aermined coefficieynomialts

in both the numerator an d the denominator of (2.9). TSolving the 7 x 7 syst emsof

OX- :

iRJ ito (2.9) leads to a N x N system of equations in which t o) X

, 6 6 tifs the solution vector. In order to approximate ()

in the range 0,< t S5 it is sufficient to choose the seven collocation points < 

t .0, 0.0\D The choice of seven points allows a cubic polynomial

in both the numerator and the denominator of (2.9)., Solving the 7 x 7 systems

leads to

q~ ~ I' - o.oqso 0 s S 3(.rt_ +o0. IV 5-, + oo. 01z1- . 5- ?rLZ7
I+ D. 3 o51 %4 6 q ? +o. 3135 x +o, O29qO 13 -(2.10a)

and

l: ~ I+~-,l~0o S-1%r + 0. q O ql o1 .~" +3o o' ogsz _fL s

|+z.;Csg8Hq + O. 1 _ +o 3S g 3 (2. 1 Ob)

Table 2 shows the values computed from (2.10) compared to the exact values

computed from the interation formulas. The interpolation error is relatively

small and is of no practical significance.



For values of %f greater than 2 5.0, simple

expressions can be invoked to approximate 

discussion following (2.5), ', as 'i a >

leading term of asymptotic expressions for .

calculated from the iterative expressions for 

we have

three-term asymptotic

As was shown in the

The term X is the

Additional terms can be

. Writing (2.5) again,

(2.5a)

=) T3 : I + /n VI )-' / (2.5b)

Beginning

expansion

with (2.5a), we use as the leading term in the asymptotic

for n . That is,

(2.11)

From (2.5a), we have

~~ (,~~~ A- h/N) ~~~~yv ~ ~) +j (2.12)
Substitut ing io th irs gives,Sub n intothe first two terms of (2.12) gives

,Yn

() _I -3 _ () = X (2.13)

Similarly, substituting T() into the first three terms of (2.12) and retaining

terms of order no higher than ,we3haveterms of order no higher thank I , we have

I - Y,5
CQ '= nL , �.' � __� �Y�' / r�)

Yn

') CO) = 7 /
II IM : -



C-Q [') - ~ - 3
I - S/3

o T ) (2.14a)

or

cC)
7f /3

Table 2. Comparison of the exact values of B and T with the
values computed from Eqs. (2.10).

(2.14b)

approximate

- i a, CC

v- I m, I'm ->r -VI

0.001 0.99975 0.99975 0.99950 0.99950
0.05 0.98773 0.98773 0.97645 0.97648
0.25 0.94290 0.94290 0.90321 0.90331
2.0 0.71667 0.71673 0.65730 0.65738
3.0 0.64951 0.64941 0.59819 0.59822
4.0 0.60123 0.60100 0.55669 0.55668

Table 3, below, compares (2.14) with the exact values of T

Table 3. Comparison of the exact values of m with the

approximate values computed from Eq. (2.14)

~~0 ~1.0 
2 0.71667 0.73037
5 0.56433 0.56467
10 0.45729 0.45731
25 0.34046 0.34046
50 0.27095 0.27095

(3)
As can be seen, works sufficiently well for /?,Sthat we can, for

practical purposes, replace ~ exact with its (3 ) asymptotic approximation.

A similar computation can be carried out for %h . The results are,

B,~ %~ 

T. Et% tztob)t,% £ I ax)
ZASLct

T .

%') � I



Q - I -) a

Ti = t - /3 -1 X -;/3, 0 (A4 i )] (2.16)

(2.17)

Table 4 compares (2.17) with the exact values of 

Table 4. Comparison of the exact values of with the
approximate values computed from Eq. (2.27)

. .~~~~~~~~~~3

O0 1.0000

2 0.65730 0.66203
5 0.52517 0.52574
10 0.43311 0.43322
25 0.32917 0.32918
50 0.26494 0.26494

Since the terms for TIMgo as $, ... , while the terms for go as

~ , ...q the function approaches the free-convective limit

more quickly than the h function.

3. Integrated forms of the flux-profile relations

Integration of the flux-profile relations yields profiles of wind and

potential temperature. It is convenient and also standard practice to integrate

between the roughness height Ad and an arbitrary height i= h>Y7{ using the

dummy variable ~/(= '/L),

= ~L* -& 1 i/?(3.la)

~ I

+ . .I (9 15)

k ,/I
i_ \0 X +_

aI 

-1:
0 -:::� LL _X_

k
0



< ) < j l t0; v 0 ~~~~~~~~~~~~~~(3. lb)

The roughness height is conventionally taken as the air-ground interface level

at which a surface energy balance is computed in a numerical prediction model.

The possible distinction between the momentum roughness height and the heat

(and vapor) roughness height is usually ignored by numerical modelers (see

Brutsaert, 1982, however, for a congently argued opposing view).

The wind speed and potential temperature at a given height i-h can be

calculated from LLU , H*, _,i ,o (o), and the integrated flux-profile

relations. It is the inverse problem, however, that is usually of greater

interest to numerical modelers. Given U() Oe h o and o ,

the inverse problem is to determine L from which U* and 0* can be calculated.

The surface momentum and heat fluxes follow from-p tLL and-JC Lk Din which

p is the density of air and , is the specific heat of air at constant

pressure.

The Obukhov length may be computed by first noting that since

(3.2)

then

: R =bU (3.3)

in which RB is the bulk Richardson number (= . A9), and Fm and Fh are the

integrated flux-profile relations,



< ~ F (h ; to)= g t§ t WL 3.4a)

5 so S ~ ~~~~( 3.4b)

2
Solving for r .- ~ j/ requires iteration since Fm /F, is a non-

linear function of .

The functions Fm and Fh can be somewhat complicated. For example, the

Businger relations y _ ) Y; y -- ield (Long and Shaffer,

1975),

_,_,,___ (, _~ * )_!..]t~f = '~ E~~ ~u(,Q,,+,) I)(3.5a)

W < t CO i ~ I) < @> T 1) | (3.5b)

h t~(QV>+) (QQoYI

in which = , L-IS-) ,") Q"2a
For the GUST relations, no known closed-form expressions for Fm and Ffi exist.

In what follows, however, we shall show how Fm and Fh can be approximated

rather closely by simple expressions that are similar in form to those derived

for C and C

Although there are no apparent analytical expressions relating ~ to Fm

and Fh, there are closed-form expressions relating Fm and Fh to TI and t

To derive them, we begin by writing Fm and Fh in what has become standard form;

that is,



( S~~) 

l -N (XVI -TC%)

The expressions involving preserve the logarithmic forms of the

profile laws that are obscured by (3.4). Since for conditions close to neutral-

ity the profile laws reduce to the log-laws,

U th5= at* I

A e = Hi- AhV 6
:-g CRE / 7

(3.8a)

(3.8b)

we may regard w m¼ as correction terms to the logarithmic profile laws that

account for diabatic conditions. For near-neutral conditions, T -- 0 Q'

To compute 

respect to ~ ,

as a function of , we differentiate Y h with
-Mj~ J

a X (y1) -;X( S. go)

in which

(3.6a)

(3.6b)

S
I

and

S

(3.7a)

(3.7b)

:Q- X-_ --

TYY, __



_ _;_ _ _k w h 0~~~~~~ _ 1 N :(3.9 )

in which the in the denominator may be eliminated by invoking the defining

GUST relations [(2.2)]. Thus, for we have,

r0n 0 0: 0 0 h _ tf 0t30 00 t: -:0 (3.10)
1-Y

From (2.2) we also have,

-: .th0\= ._ 3 000 (3.11)

-t~ - ; hh :L

from which we get, after reducing to partial fractions,

- ;Ato & 'iA~mL - ci3 z :(3.12)

h~. & ,,/~. t + ~, f Sh l t th
By numerical integration or by 'marching' methods we can create a table of h

as a function of h or we may simply integrate (3.12) analytically to get

?~ ~ = ~ ~)~3~ fiv , 9- Y-y 1+4 .0th tt~h) -th l) _ 3 ti + > > S I X), 0(3.13a)
~-/

Similarly, for , we have, assuming ? < 

for TIMm3 = 1-) I -3J u A;(<

t ~_X~ ) (3.13b)

'2-~~~~~n 2
(Paulson, 1970). If we elect to use rational fraction interpolation for

° ~ SI we can combine (3.13) with Table 1 to force collocation atOoo o. 0 .¥ , .O)

2.5 ~-.o



This calculation yields

.-.%,~ gqy5ot +o.qIo,7cS* l+ o. oc. (5&1'7 3
i +L8§ tO 88 go ISl i l 11 990 rlo 2 + 0. 035 3 1I G S 3 r . at+1- ,lO'- 0 ~S%%t,[%b~gqO %z.1o~ d- 0.o3-51(~ ~ r~.(3.14a)

rv O, I'J q q q % °oH 4 '4' 1 6 '+ O- . 9~ 3ZH 8 + 2 33
e (3.14b)

I- t . 87 0O Ig + o 1 05 q o,o3 .1720 3

A brief table for \) approx is given below. As with approx,

interpolation errors are negligible.

For 6 P/5, we can derive a pair of relations for k similar in form

to those for . To begin, we rewrite as

'Ki~~%)=- ~~=o~) ± ~~-~j ~~m(~?j) (3.15)

By setting a = 5 we can expect that the integral in (3.15) will be approximated

closely by using the asymptotic relations forT given by (2.14) and

(2.16). Since T (5) = 0.700734, we have

o..>,5; = 0 )(3.16)j 0 ()'9 ~~+ C O-

where

nr
(3.17)

CL~~~~~~~~~~~~~

and, is a 'constant' of integration that depends upon a,



Table 5. Comparison of the exact values of Boh with the
approximate values computed from Eqs. (3.14)

W-- 4-clZ) \P tL 'A ct ES <,0.)

0.001 0.00024796 0.00024795 0.00049968 0.00049969
0.05 0.012384 0.012383 0.024255 0.024257
0.25 0.059724 0.059727 0.10940 0.10940
2.0 0.37144 0.37144 0.54023 0.54022
3.0 0.49985 0.49983 0.69118 0.69120
4.0 0.60762 0.60761 0.81276 0.81284

C CL

65-

-'3~

(3.18)

Substitution leads to

-t- CO- = ",
(3.19)

so that,

(3.20)

Let us compare (3.20) with the analytical expression forim . For large

values of e , the analytical result becomes

lirn ( ) I~-L

since - . for . The constant termrin (3.21) equals -2.65024

and represents the limiting value of . (a) + C A as - The

difference between (3.19) in which a = 5 and the limiting value is of no

practical significance. Comparisons between (3.20) and the exact values of

are given below.

(3.21)

� , 1 516, 0, Igo-)
W

-s=- - 3 G - I

I 4- '91n OL, ,

(OL -= i� )

r� C�a

, , I -L Y-(L atI --

He Ia& I t }(
an! 8 ) - "6- sr 3 .



Table 6. Comparison of the exact values of fi with the

approximate values computed from Eq. (3.20)

Wi F v (.3.72-o)

5 0.70073 0.70073
6 0.78287 0.78282
8 0.92316 0.92309
10 1.0406 1.0405

25 1.5937 1.5936
50 2.0758 2.0757

The computation of ih (C'7i5) proceeds along similar lines. Using h)=

0.91520: and the relations (2.16) and (3.15) , we get,

T il (a" S) X 9ma +

in which,

1 c&-= 5) + C "=S

The limiting form of the analytical expression for ? h is

r1. OO
= -Q2- +k) 49A14k

(3.24)

Thus, Ii m 2 a__( +EI)= -2.38629. This limiting value is only
tL --' n 00 *'Iy VI h - It

slightly different from t -'

is, therefore,

. The approximation we shall use for Th

(3.22)

(3.23)

\Ad -C AXt-+

3~ % (l-. A + 45 V) + T (a 0~5) i- C a_

k ~

In~v5 I 3( + 4 + \, V ) _- , t 6B~ ( 5 ' (3.25)

Y � ('YL)



Table 7 compares the exact values of h with the values given by (3.25).

Table 7. Comparison of the exact values of fh with the
approximate values computed from Eq. (3.25)

5 0.91520 0.915120
6 1.0041 1.0040

8 1.1535 1.1533

10 1.2768 1.2766

25 1.8455 1.8452

50 2.8619 2.8617

4. Other surface layer relationships

Drag and heat transfer coefficient methods are common and convenient

formulations for calculating momentum, heat, and moisture fluxes. By definition

of the drag (CD) and heat transfer (CH) coefficients, we have

momentum flux = - C 0 (4.la)

sensible heat flux - C C U 0 (4.1b)

latent heat flux -Cxb (4.1c)

From the results in the previous section, it follows that

2.@- / X = / ~~Fyn (4.2a)

and

C LC 

(4.2b)



The coefficients CD and CH are non-negative and vary smoothly with increasing

instability. Table 8 gives values of C D and C k for the Businger - GUST

relations for various values of--/L and m/S. CD and CH are increasingly

sensitive to changes in stability for increasingly larger roughness heights.

The values Km and Kh, the eddy diffusion coefficients for momentum and

heat, can be determined from the relations

Table 8. Drag (CDx1 03) and heat transfer (CHx103) coefficients as a function
of - / L and e /SO for the Businger - GUST profile relations

e/~o-57 x lot /0o= 5x-o3 o =x I Ao y

L Cr t i s C V C:D C H

0.0 3.17 4.29 1.69 2.28 1.05 1.41

0.1 3.50 4.74 1.81 2.45 1.11 1.50

0.5 4.32 5.81 2.11 2.84 1.24 1.68

1.0 5.01 6.70 2.33 3.13 1.34 1.81

2.5 6.48 8.58 2.77 3.69 1.53 2.04

5.0 7.89 10.50 3.25 4.31 1.72 2.29

10.0 11.30 14.60 3.92 5.16 1.97 2.61

25.0 19.30 24.40 5.26 6.87 2.41 3.18

50.0 33.40 41.10 6.89 8.91 2.88 3.79

1-00.0 73.70 86.20 9.49 12.10 3.53 4.61

Us:). -,= X< "
a 'Z4 *--- _,K --

which can be rewritten as

= k 'tt / S o /.in
K %t'V i -> / b~1(it I I-).

(4.3a)

(4.3b)

(4.4a)

(4.4b)



The ratioci ) , - /y = q /b T the surface layer inverse Prandtl number, is

1.35 for near-neutral conditions for the Businger relations. As - ~ increases,

ct increases as '- 2.06 (- ) for large -~ . On the other hand, the

Businger - GUST relations show no such increase with -~ , and oL approaches

the limiting value of 1.14 for - S->_° (see Table 9). The Dyer - GUST relations

yield oL = 1.0 for near-neutral conditions and differ only slightly from unity

for all values of - % > 0 . All relations of the GUST form must have vo>o L=

const and K t "~ for - % . Thus, OLQC) cannot increase without

bound for -. >>1.

Table 9. The inverse Prandtl number c. , where cL = i h/ , m
for the Businger-GUST relations ( oL ) and the
Businger profile relations (C ) (

s It _ . ,~~~~~~O is
0.0 1.35 1.35

0.1 1.34 1.48

0.5 1.25 1.86

1.0 1.22 2.14

2.5 1.18 2.63

5.0 1.17 3.10

10.0 1.16 3.68

25.0 1.15 4.61

50.0 1.15 5.48

100.0 1.14 6.52

As noted in Section 3, the 'inverse problem' in which is computed from

the bulk Richardson number RB,

(4.5)

requires an iterative solution since Fm and Fh depend nonlinearly upon and

S . For near-neutral conditions; however,



(4.6)

For - >>1, it is possible to derive a limiting expression for (4.5). From the

GUST relations (3.20, 24), it follows that for -» >>1,

+ C (4.7a)

(4.7b)

in which C m r , ( C 1 Using Ir

-"J h
that Fm and Fh become

Fm

uX~ (-. L/L-) + OL~

in which

C f ; - *•w Th

Eqs. (4.8) allow (4.5) to be approximated by

Io/L Z1 ~:0 1A 9
~Q6u

2-

~~j P(~~~~~~/*-e~~~~) + cA~~~-.a

A/
-4 ^ +

~~ B t -( 4 .1 0)~ C k

, we see

(4.8a)

(4.8b)

(4.9)

or

rDU

A /11

RE L
(4.10)

I/YL� ')

11o NM _ & I

t &(h )S L: q + C I



in which L L L_ . and An - . J e// UL . We see that h drops out

as a relevant parameter. Eq. (4.10) is a relatively simple nonlinear relation

A
for which the right-side is a slowly-varying function of L. Thus, a crude

approximation is R L n C = const. A better approximation is
B

or j I 

Lib t SC S Q g Age ~~~~~~(4.11)

A more accurate result over a wider range of R can be calculated from

(o , + o L~)
I+ 1I -=-\-~10

(4.12)

in which Xand b are calculated using rational

fraction methods. When this expression is combined with an approximation valid

for mildly unstable conditions, the result is a method that provides accurate,

efficient noniterative iestimates of L. This method provides a simple method of

computing surface fluxes of momentum, heat, and moisture in numerical weather

prediction models that have a thin (' %5--lootn) lower layer. The full solution

to the inverse problem will be given in a future report.

5. Conclusions

A General Unified Similarily Theory (GUST) unites the standard empirical

flux-profile relations for the unstable surface planetary boundary layer with

the predictions of free-convection theory. The basic relations consist of the

L- _x.

_K A



well-known 'KEYPS' quartic equation for wind and a new cubic equation for

temperature. The positive roots of the quartic and cubic equation represent

the nondimensional wind shear ( ) and temperature gradient ( )

respectively. Although the use of the GUST relations appears computationally

inefficient compared, for example, to the standard Businger or Dyer flux

relations, computationally simple rational fraction and asymptotic relations

are developed that closely approximate the exact values of the GUST (/L)

and (7/[L). For slightly unstable regimes and approximate

the standard '- 2' and '-J-' power profile expressions. As instability increases

(--+/L»>>), c and , approach the i power law predicted by free-

convection theory.

One of the prime uses of flux-profile relations is in the solution of an

'inverse problem' that arises in numerical weather prediction models. The

inverse problem consists of the determination ofh/L, L/ , and the

surface fluxes of momentum and heat from the known values of U(¾) AE_@)-

- @( and ~ . The surface fluxes of momentum and heat are given by-p U.*

and-pC oThe solution for h/L requires the iteration of a nonlinear expression

containing the factors Fm and Fh which involve the integrals of w )/

and §)/ from =t/L tok L, and also ; = - Ae/ O) ,

the bulk Richardson number. As is the case with and h Fm and Fh

can be approximated by rational fractions and asymptotic expressions that are

no more computationally burdensome than the corresponding forms of the Businger

and Dyer Fm and Fh. For the limiting case of extreme instability, the quantities

h/L and M = x / / 0 u drop out (h becomes an irrelevant factor) and

are replaced by L = L/ and RB= iL, A9/? . This simplification

leads to a nonlinear equation whose solution can be readily approximated by a

rational fraction.



APPENDIX: NOTATION

a = specific value of ; amh = constants in asymptotic relations

b = constant in nondimensional temperature gradient (= neutral Prandtl number)

c = constant in nondimensional humidity gradient; Cam,h constants of integration;
CD = drag coefficient; CH,q = heat and moisture transfer coefficients; Cp =
specific heat of air at constant pressure

f = arbitrary function; Fmh = integrals involving momentum and temperature profiles

g = acceleration due to gravity; GUST = General Unified Similarity Theory

h = arbitrary height within the surface layer such that h>>zo.

Im,h (X ) = integrals involved in the asymptotic expressions for | m,h

j = iteration index; x - coordinate index

k = von Karman's constant; Km,h = eddy diffusion coefficients for momentum and heat

L = Obukhov length scale; degree of polynomial in the numerator of a rational
fraction; 't = L/zo;t = latent heat of vaporization

M = degree of polynomial in the denominator of a rational fraction

N = number of points (N = L+M+1) that can be fit with a rational fraction

Qh,o = factors in the integrated forms of the flux-profile relations; q = specific
humidity; q = - ; q* = turbulent scaling specific humidity

2 A
RB = bulk Richardson number (= gh A/eU 2 ); RB = modified bulk Richardson number

(= zo RB/bh); Rh,o = factors in the integrated forms of the flux-profile
relations

U = wind speed within the surface layer at height z or h; u* = "friction" velocity

xj = jth point on the x-axis

yj = jth value of f (xj)

z = arbitrary height; zo = roughness length (height)

() = Kh (t)/Km&~) (= inverse Prandtl number)

(= generic for _ ; -h = constants multiplying z/L in profile relations
for wind and temperature



= generic for ;= - -
= potential temperature; o ('i= h) ; Q = reference or mean potential

temperature; o = turbulent scaling temperature

= density of air

m,h,q = nondimensional "universal" gradients of wind speed, temperature, and
humidity

m,h = integrated forms of nondimensional gradients of wind and temperature
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